
LLM APPLICATIONS SECURITY CANVAS
Protect against jailbreaks and prompt injections

Inspect / Sanitize

Instruction / Data Separation

Use Spotlighting / prompt engineering
techniques to help the LLM distinguish
instructions from data

 Border strings
 Data-marking
 Multi-turn dialogue

Contextual, use-case specific input
validation (length, format, language,
character set, …)

Block common Jailbreak /Prompt
Injection patterns

Moderate inputs for general
harm categories such as hate speech,
violence, self-harm, …

Apply topical guardrails /
semantic routing to ensure user queries
match intended scope / use-case and are
routed accordingly

Inspect / Sanitize

Contextual, use-case specific output validation

Allow only expected content types/formats
(strictly validate JSON/XML field values)

Block potentially dangerous content like URLs,
JavaScript, or markdown images, unless
explicitly validated through an allow-list.

Ensure safe rendering in web apps
(contextual output encoding, Content
Security Policy, …)

Moderate outputs for harm categories like hate
speech, violence, self-harm, …

Real-time hallucination and offtopic checks
for responses

Tool / Function Calls

Access Control

 Least privilege
 Downstream checks
 Sandboxing

Safe APIs

 Limit function / scope of allowed operations

 Ensure APIs/functions are not vulnerable
themselves (OWASP Top 10)

Classic block/allow-lists

 Exact text matching and regex

Machine learning methods

 Semantic search using embeddings
 Classifiers, such as BERT
 LLM-as-judge

ImplementationUntrusted input sources

v2.3

Prompt Output

Human
in the
loop

All sensitive actions are
approved by humans

Rule #1 Treat the LLM as untrusted
Rule #2 Validate LLM outputs
Rule #3 Validate LLM inputs
Rule #4 Implement adaptive content
moderation and suspend offenders

THE RULES FOR USING LLM

